sábado, 25 de agosto de 2012


TEMAS: DISCO DURO - BUSES (MOTHERBOARD)

25 DE AGOSTO DE 2012


DISCOS DUROS: Problemas varios:



Debido a la distancia extremadamente pequeña entre los cabezales y la superficie del disco, cualquier contaminación de los cabezales de lectura/escritura o las fuentes puede dar lugar a un accidente en los cabezales, un fallo del disco en el que el cabezal raya la superficie de la fuente, a menudo moliendo la fina película magnética y causando la pérdida de datos. Estos accidentes pueden ser causados por un fallo electrónico, un repentino corte en el suministro eléctrico, golpes físicos, el desgaste, la corrosión o debido a que los cabezales o las fuentes sean de pobre fabricación.

Un disco duro tiene una falla física cuando:
Problema: Se oye un ruido metálico contínuo proveniente de su interior
Causa (Se refiere a que los cabezales del lector-escritura, han aterrizado sobre la superficie de los platos)
Solución: Para este caso no hay solución, sólo reemplazarlo por otro disco duro.
 Problema
Se oye una especie de TAP-TAP rápido y seguido.
(El recorrido de los cabezales hacen por leer las pistas de afuera hacia dentro de la superficie de los platos.
El BIOS manda un mensaje de error leyendo el driver C”. La causa, la sustancia magnética que retiene los datos se esta degradando.
Solución El problema podría solucionarse, formateando el disco y si no es así el disco está dañado y es necesario reemplazarlo.

El disco arranca a veces.

El disco no gira y se calienta bastante.
Problema: El circuito electrónico ha estado en corto.
Cuando huele a quemado.
Causa (por una colocación del cable plano de señales invertido)
Solución: Colocarlo debidamente los cables.
Una posible solución sería cambiar la planar del disco duro.
Problema. Al encender el equipo no permite cargar el sistema operativo y realiza reinicios seguidos y aparece como mensaje de error "Error al cargar el sistema operativo".
Causa. Uno de los sectores de arranque de el disco duro se ha dañado el cual no permite completar el proceso para el inicio del sistema.
Solución: Realizar un diagnóstico general del disco duro con algún software para reparar sectores dañados.(Software Recomendado Hiren´s Boot CD).

El disco Duro puede fallar por otras causas como éstas:
El ingreso de un virus informático, reinicio frecuente, origina la segmentación del programa y el sistema operativo, el recalentamiento del PC por falla de ventilación. La vibración de la mesa o escritorio, una errónea instalación de sistema operativo, una fuente de energía defectuosa.

DISCO DURO: Funcionamiento y constitución física del insumo

La foto muestra los componentes de un disco duro sata, completamente desarmado como se vé;  es un dispositivo de almacenamiento de datos no volátil que emplea un sistema de grabación magnética para almacenar datos digitales. Se compone de uno o más platos o discos rígidos, unidos por un mismo eje que gira a gran velocidad dentro de una caja metálica sellada. Sobre cada plato, y en cada una de sus caras, se sitúa un cabezal de lectura/escritura que flota sobre una delgada lámina de aire generada por la rotación de los discos.

Todos se comunican con la computadora a través del controlador de disco, empleando una interfaz estandarizado. Los más comunes hoy día son IDE (también llamado ATA o PATA), SCSI (generalmente usado en servidores y estaciones de trabajo), Serial ATA y FC (empleado exclusivamente en servidores).
Para poder utilizar un disco duro, un sistema operativo debe aplicar un formato de bajo nivel que defina una o más particiones. La operación de formateo requiere el uso de una fracción del espacio disponible en el disco, que dependerá del formato empleado. Además, los fabricantes de discos duros, unidades de estado sólido y tarjetas flash miden la capacidad de los mismos usando prefijos SI, que emplean múltiplos de potencias de 1000 según la normativa IEC, en lugar de los prefijos binarios clásicos de la IEEE, que emplean múltiplos de potencias de 1024, y son los usados mayoritariamente por los sistemas operativos. Esto provoca que en algunos sistemas operativos sea representado como múltiplos 1024 o como 1000, y por tanto existan ligeros errores, por ejemplo un Disco duro de 500 GB, en algunos sistemas operativos sea representado como 465 GiB (Según la IEC Gibibyte, o Gigabyte binario, que son 1024 Mebibytes) y en otros como 500 GB.
Las unidades de estado sólido tienen el mismo uso que los discos duros y emplean las mismas interfaces, pero no están formadas por discos mecánicos, sino por memorias de circuitos integrados para almacenar la información.



Estructura física
Dentro de un disco duro hay uno o varios discos (de aluminio o cristal) concéntricos llamados platos (normalmente entre 2 y 4, aunque pueden ser hasta 6 ó 7 según el modelo), y que giran todos a la vez sobre el mismo eje, al que están unidos. El cabezal (dispositivo de lectura y escritura) está formado por un conjunto de brazos paralelos a los platos, alineados verticalmente y que también se desplazan de forma simultánea, en cuya punta están las cabezas de lectura/escritura. Por norma general hay una cabeza de lectura/escritura para cada superficie de cada plato. Los cabezales pueden moverse hacia el interior o el exterior de los platos, lo cual combinado con la rotación de los mismos permite que los cabezales puedan alcanzar cualquier posición de la superficie de los platos..
Cada plato posee dos ojos, y es necesaria una cabeza de lectura/escritura para cada cara. Si se observa el esquema Cilindro-Cabeza-Sector de más abajo, a primera vista se ven 4 brazos, uno para cada plato. En realidad, cada uno de los brazos es doble, y contiene 2 cabezas: una para leer la cara superior del plato, y otra para leer la cara inferior. Por tanto, hay 8 cabezas para leer 4 platos, aunque por cuestiones comerciales, no siempre se usan todas las caras de los discos y existen discos duros con un número impar de cabezas, o con cabezas deshabilitadas. Las cabezas de lectura/escritura nunca tocan el disco, sino que pasan muy cerca (hasta a 3 nanómetros), debido a una finísima película de aire que se forma entre éstas y los platos cuando éstos giran (algunos discos incluyen un sistema que impide que los cabezales pasen por encima de los platos hasta que alcancen una velocidad de giro que garantice la formación de esta película). Si alguna de las cabezas llega a tocar una superficie de un plato, causaría muchos daños en él, rayándolo gravemente, debido a lo rápido que giran los platos (uno de 7.200 revoluciones por minuto se mueve a 129 km/h en el borde de un disco de 3,5 pulgadas).


Funcionamiento mecánico
Un disco duro suele tener:
Platos en donde se graban los datos.
Cabezal de lectura/escritura.
Motor que hace girar los platos.
Electroimán que mueve el cabezal.
Circuito electrónico de control, que incluye: interfaz con la computadora, memoria caché.
Bolsita desecante (gel de sílice) para evitar la humedad.
Caja, que ha de proteger de la suciedad, motivo por el cual suele traer algún filtro de aire.





En el siguiente dibujo se puede apreciar la parte del plato como se conforma: cabeza, sector, pista.

Plato: cada uno de los discos que hay dentro del disco duro.
Cara: cada uno de los dos lados de un plato.
Cabeza: número de cabezales.
Pistas: una circunferencia dentro de una cara; la pista 0 está en el borde exterior.
Cilindro: conjunto de varias pistas; son todas las circunferencias que están alineadas verticalmente (una de cada cara).
Sector : cada una de las divisiones de una pista. El tamaño del sector no es fijo, siendo el estándar actual 512 bytes, aunque próximamente serán 4 KiB. Antiguamente el número de sectores por pista era fijo, lo cual desaprovechaba el espacio significativamente, ya que en las pistas exteriores pueden almacenarse más sectores que en las interiores. Así, apareció la tecnología ZBR (grabación de bits por zonas) que aumenta el número de sectores en las pistas exteriores, y utiliza más eficientemente el disco duro. Así las pistas se agrupan en zonas de pistas de igual cantidad de sectores. Cuanto más lejos del centro de cada plato se encuentra una zona, ésta contiene una mayor cantidad de sectores en sus pistas. Además mediante ZBR, cuando se leen sectores de cilindros más externos la tasa de transferencia de bits por segundo es mayor; por tener la misma velocidad angular que cilindros internos pero mayor cantidad de sectores.

Dentro del disco se encuentran:
El Master Boot Record (en el sector de arranque), que contiene la tabla de particiones.
Las particiones, necesarias para poder colocar los sistemas de archivos. Un cluster muy importante, por cierto.





En éste dibujo de un plato tenemos: A) pista; B) sector; C) sector de una pista; D) cluster.

Características de un disco duro

Las características que se deben tener en cuenta en un disco duro son:
Tiempo medio de acceso: Tiempo medio que tarda la aguja en situarse en la pista y el sector deseado; es la suma del Tiempo medio de búsqueda (situarse en la pista), Tiempo de lectura/escritura y la Latencia media (situarse en el sector).
Tiempo medio de búsqueda: Tiempo medio que tarda la aguja en situarse en la pista deseada; es la mitad del tiempo empleado por la aguja en ir desde la pista más periférica hasta la más central del disco.
Tiempo de lectura/escritura: Tiempo medio que tarda el disco en leer o escribir nueva información: Depende de la cantidad de información que se quiere leer o escribir, el tamaño de bloque, el número de cabezales, el tiempo por vuelta y la cantidad de sectores por pista.
Latencia media: Tiempo medio que tarda la aguja en situarse en el sector deseado; es la mitad del tiempo empleado en una rotación completa del disco.
Velocidad de rotación: Revoluciones por minuto de los platos. A mayor velocidad de rotación, menor latencia media.
Tasa de transferencia: Velocidad a la que puede transferir la información a la computadora una vez la aguja está situada en la pista y sector correctos. Puede ser velocidad sostenida o de pico.
Otras características son:
Caché de pista: Es una memoria tipo Flash dentro del disco duro.
Interfaz: Medio de comunicación entre el disco duro y la computadora. Puede ser IDE/ATA, SCSI, SATA, USB, Firewire, Serial Attached SCSI
Landz: Zona sobre las que aparcan las cabezas una vez se apaga la computadora.
La conexión de corriente y del cable de datos en su forma correcta.
-------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------

BUSES : QUE ES Y COMO TRABAJA


En informática, un bus es un conjunto cableado que sirve para que los dispositivos hardware puedan comunicarse entre sí. Son rutas compartidas por todos los dispositivos y les permiten transmitir información de unos a otros, son, en definitiva, las autopistas de la información interna, las que permiten las transferencias de toda la información manejada por el sistema. 

En un bus, todos los nodos conectados a él reciben los datos que se vuelcan, pero sólo aquél dispositivo al que va dirigida la información es quien la toma y la procesa, el resto la ignora. 

Los conductores eléctricos de un bus pueden ser tanto en paralelo como en serie. El bus de datos de los discos duros IDE (ATA) es paralelo (varios cables); en cambio, en los discos Serial ATA, el bus es serie (una sola vía de datos). 

Existen varios tipos: 
- Bus de direcciones 
- Bus de control 
- Bus de datos 

En este artículo nos centraremos en el bus de datos, debido a que sus conceptos se utilizan más en la informática. Concretamente el FSB, que es un bus de datos y se suele manipular en la práctica del Overclocking. 

En las arquitecturas de ordenadores personales, el procesador (CPU), que es el que controla y procesa todas las operaciones, debe comunicarse con el resto de dispositivos (y algunos entre ellos también) para poder recibir la información, transmitirla procesada, así como mandar órdenes a otros dispositivos. Por ese motivo está conectado al chip Northbridge mediante un bus de datos fundamental: el FSB. 

En esta imagen tenemos una representación de la arquitectura Northbridge/Southbridge. Las flechas indican buses de datos que comunican los diferentes dispositivos de un ordenador. El chipset de una placa base, formado básicamente por el Northbridge (controlador de puente norte) y el Southbridge (controlador de puente sur), se encarga de gobernar las comunicaciones en los buses, de la misma manera que los semáforos regulan el tráfico en las calles de una ciudad. 

El Northbridge es el chip más importante, el núcleo de la placa base; tiene la función de controlar las comunicaciones entre procesador, memoria RAM, tarjeta gráfica y el Southbridge, y servir de conexión central entre los dispositivos mencionados. 

El Southbridge es un chip que controla los dispositivos de entrada/salida del sistema (periféricos como disco duro, teclado, ratón, puertos PCI...), se comunica con el resto del sistema mediante el chip principal: Northbridge. 

Uno de los buses de datos más importante es el que conecta al procesador (CPU) con el resto del sistema a través del Northbridge, se le conoce como FSB (bus frontal), y transmite toda la información del procesador al resto de dispositivos y viceversa. La frecuencia de un procesador se expresa en términos de la frecuencia del FSB multiplicado por un valor predeterminado por el fabricante, por eso conocer bien el FSB es vital en la práctica del Overclocking (forzar un procesador a trabajar a una velocidad mayor que la de serie). 

El resto de buses no tienen un nombre concreto y se les conoce por el dispositivo con el que conectan. El bus de memoria conecta la memoria RAM al sistema mediante el Northbridge (en algunas arquitecturas, como HyperTransport, la memoria RAM se comunica directamente con el procesador sin pasar por el Northbridge), el bus AGP (o PCI-Express) conecta la tarjeta gráfica con el Northbridge. También existe un bus especial que conecta el Northbridge con el Southbridge, ya que estos chips deben pasarse grandes cantidades de datos debido a la naturaleza de los dispositivos que controlan. 

En la siguiente imagen mostramos una variación de la arquitectura mencionada anteriormente, aunque sus fundamentos son muy similares. En este caso la memoria se conecta a la CPU directamente mediante un controlador independiente, el resto es similar cambiando algunos nombres. Las flechas y barras de color verde (y negro) indican buses de datos. 

Por tanto, el bus de datos y las interconexiones de la placa base, así como su chipset, son esenciales para la eficiencia. De nada serviría un procesador extremadamente rápido, si las tuberías que le abastecen y a través de las cuales debe mandar la información son lentas. De ahí que una buena placa base, con un chipset potente y unas conexiones internas rápidas, sea extremadamente importante al comprar un ordenador a fin de mantener estabilidad y equilibrio entre los componentes. 
lA IMPORTANCIA DE CONOCER LA FRECUENCIA DEL CHIPSET DE LA PLACA MADRE A LA HORA DEL ARMADO DE UNA PC, EN RELACIÓN CON EL PROCESADOR Y LA MEMORIA RAM.
-------------------------------------------------------------------------------------------------------------------------
FONDOS DE PANTALLA






-----------------------------------------------------------------------------------------------------------
-----------------------------------------------------------------------------------------------------------
En este número quiero aprovechar agradecer a todos aquellos que entran en este blog y que la información que contiene cada uno de los mismo publicados pueda serle de utilidad y sirva para que  amplíen sus conocimientos. Gracias por leer!
-------------------------------------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------------------------------------










No hay comentarios:

Publicar un comentario